TTU Home Communications & Marketing Home Texas Tech Today

Texas Tech CERN Physicists Celebrate Nobel Prize

High Energy Physics Group played a significant role advancing the theory, discovering the particle.

Written by John Davis

Scientists at CERN react to the announcement of Nobel Prize in Physics.

Scientists at CERN react to the announcement of Nobel Prize in Physics.

The Royal Swedish Academy of Sciences today jointly awarded the Nobel Prize in Physics to François Englert and Peter W. Higgs to recognize their work developing the theory of what is now known as the Higgs field, which gives elementary particles mass.

U.S. scientists, including Texas Tech’s High Energy Physics Group, played a significant role in advancing the theory and in discovering the particle at The European Organization for Nuclear Research (CERN) that proves the existence of the Higgs field, the Higgs boson, announced in March this year.

Nural Akchurin, a professor of physics and a member of the physics group has served in leading roles in one of the two major experiments at CERN that is called the Compact Muon Solenoid (CMS). He and three other Texas Tech professors designed calorimeters, which are detectors that measure the energies of fundamental particles and serve as “catcher’s mitts” to grab evidence of the Higgs boson.

“Today, I sincerely congratulate Professors Peter Higgs and François Englert on the award of the 2013 Nobel prize in physics for their pioneering work in identifying the electroweak-symmetry-breaking mechanism,” Akchurin said. “They both deserve it well. Many years and many careers were/are devoted to the investigation of the Higgs particle. I worked on one of the experiments that discovered the Higgs boson, which is the particle responsible for giving mass to an object. To me, personally, this award means that as a society we still care about science and value its place in our lives.”

First imagined in the early ’60s and since dubbed the “God” particle, physicists believe the Higgs boson is responsible for giving mass to particles – basically nature’s smallest building blocks. They make a pencil a pencil or a rock a rock instead of loose energy floating around in space. In July 2012, researchers with the High Energy Physics Group said they and other scientists discovered forensic evidence – a shadow or an impression – of the elusive Higgs boson.

Texas Tech’s role

To find Higgs and answer other physics questions, scientists accelerated opposing beams of protons to near the speed of light in the 17-mile, circular Large Hadron Collider (LHC), which lies underground near Geneva, Switzerland, and is considered one of the great engineering milestones of mankind. As these protons were shot around the circular tunnel, the CMS caught what was created when these protons crashed into each other.

Somewhere in the melee of these particles’ high-energy collisions, researchers discovered evidence of the Higgs boson that can be identified by the products of its decay.

Higgs was the last particle of this theory left to be discovered, and its discovery has cemented the Standard Model.

In a decade and a half, Akchurin, three other professors and more than 10 post-doctoral and doctoral students from Texas Tech have joined a phalanx of about 3,000 international scientists probing the bounds of mass and matter and answer some of the universe’s most mind-blowing riddles.

Sung-won Lee, second from left, celebrates Peter Higgs’ 70th birthday, third from left at a birthday part in 2000 in Edinburgh, Scotland. Nobel laureate Gerardus ‘t Hooft, second from the right, is also pictured.

Sung-won Lee, second from left, celebrates Peter Higgs’ 70th birthday, third from left, at a birthday part in 2000 in Edinburgh, Scotland. Nobel laureate Gerardus ‘t Hooft, second from the right, is also pictured.

“Some of us invested large portions of our scientific careers into this exploration,” Akchurin said. “I must admit the July 4 announcement last year was special for me in more ways than one. Discoveries tend to be like a flash of light: They are exciting, but last a fleeting moment. In this case, I think the excitement is still with us. There is more work to do, more questions to answer. The more we learn, the more questions appear.”

Since 2009, the international group of scientists has hoped the $8 billion LHC and CMS would prove the existence of matter’s smallest building blocks as well as dark matter, the secrets of extra dimensions and how the universe began.

Ideas included in this “new physics” brand of particle science can boggle the mind. Some theories suggest there are actually 11 dimensions instead of four. Another theory says we live in a multiverse instead of a universe. Proof of these theories may come as the experiments continue and more data is analyzed.

Significant Contributions

Sung-Won Lee, an associate professor of physics at Texas Tech, was one of the scientists who watched the calorimeters and hoped to catch Higgs and other new particles. As data accumulated and different analyses were put together by different groups of scientists, he said a clearer picture of Higgs began to emerge.

“The work done by LHC experiments would not be possible without the help of many physicists including Texas Tech researchers,” Lee said. “Personally, I am extremely proud and honored to be part of this great discovery that helped us to answer some of the most profound questions in our understanding of the structure of matter and the evolution of the early universe. I believe that, with Texas Tech’s extensive research experience, we can contribute to making more discoveries in the future.”

Lee said that Texas Tech played an important role in each step of the data analysis that led to the discovery of the Higgs boson at LHC. He and other researchers made a significant contributions to the detector development/commissioning, software development, and high performance computing for analyzing the results. But the work isn’t done yet, Lee said. There may be more than one Higgs hiding among the collision wreckage. The theory of supersymmetry suggests there could be up to five different mass-giving particles.

“There are too many physics processes in the context of the Standard Model that look like Higgs,” Lee said. “So, the searching for Higgs is one of the most sophisticated efforts in the LHC physics program. There are huge amounts of statistical data, understanding the other physics processes, and understanding our detector also. ”

Nearly 2,000 physicists from U.S. institutions—including 89 U.S. universities and seven U.S. Department of Energy laboratories—participate in the ATLAS and CMS experiments, making up about 23 percent of the ATLAS collaboration and 33 percent of CMS at the time of the Higgs discovery.

FacebookTwitterLinkedInGoogle GmailTumblrGoogle+RedditShare


4 Responses to “Texas Tech CERN Physicists Celebrate Nobel Prize”

  1. Min-Joo Kim Says:

    Congratulations!! I’m really thrilled for you folks! It must feel so surreal to be part of this type of honor. Enjoy!

  2. Debra Boyce Says:

    So very proud of each and every one of you!! Very honored to have been there in July 2012 to celebrate in your excitement and joyful news relative to this discovery! Looking forward to even more things to come from you as you continue your research efforts at Texas Tech and share it with Physics students to carry on that work!!

  3. Homer "Bud" Henderson Says:

    As a 1961 graduate of the Physics Dept, I am so proud of you guys, the Dept and Tech. It all started with a handmade particle accelerator built solely by Tech profs and students in the late 50′s and early 60′s.Was it in the basement of the building as I recall? And not a transistor or laser in it as we had none of those!!!
    I’ll have a cold beer to celebrate!
    Now maybe we can cure the common cold.
    Bud Henderson
    Boulder, Co

  4. Endecotts Says:

    Sorry it’s a bit late, but I only found out about this award yesterday! News travels slow over here it seems. Congratulations to everyone involved.

Leave a Reply

Featured Expert

Nural Akchurin

Nural Akchurin is a professor in the Department of Physics in the College of Arts and Sciences.

View his online Expert Profile.

Featured Expert
Sung-Won Lee

Sung-Won Lee is an associate professor in the Department of Physics in the College of Arts and Sciences.

View his profile in our online Experts Guide.

Department of Physics
Department of Physics

The Department of Physics is active in a broad range of research and teaching activities designed to prepare undergraduates for challenging careers in science and technology. Graduates of the department have gone on to successful careers at universities, national laboratories, and in industry.

The department offers the Bachelor of Science degree in physics, and in cooperation with the College of Engineering, also offers courses leading to the Bachelor of Science in engineering physics.

Arts & Sciences
The College of Arts & Sciences

The College of Arts & Sciences at Texas Tech consists of 18 departments which provide a wide variety of courses and programs in liberal arts, humanities, mathematics, social and behavioral sciences, natural sciences and communication.

The college offers 44 bachelor's degree opportunities, 107 master's degrees and 18 doctoral degrees.

Over 8,500 undergraduate and 1,100 graduate students are enrolled in the college.

Learn more about specific Departments, Programs, Centers and Institutes.

A brief history of the College of Arts & Sciences.

Related

Texas Tech Physicists: Higgs Boson Likely Discovered

Texas Tech Researchers Announce CERN Discovery